Congenital deafness affects deep layers in primary and secondary auditory cortex

نویسندگان

  • Christoph Berger
  • Daniela Kühne
  • Verena Scheper
  • Andrej Kral
چکیده

Congenital deafness leads to functional deficits in the auditory cortex for which early cochlear implantation can effectively compensate. Most of these deficits have been demonstrated functionally. Furthermore, the majority of previous studies on deafness have involved the primary auditory cortex; knowledge of higher-order areas is limited to effects of cross-modal reorganization. In this study, we compared the cortical cytoarchitecture of four cortical areas in adult hearing and congenitally deaf cats (CDCs): the primary auditory field A1, two secondary auditory fields, namely the dorsal zone and second auditory field (A2); and a reference visual association field (area 7) in the same section stained either using Nissl or SMI-32 antibodies. The general cytoarchitectonic pattern and the area-specific characteristics in the auditory cortex remained unchanged in animals with congenital deafness. Whereas area 7 did not differ between the groups investigated, all auditory fields were slightly thinner in CDCs, this being caused by reduced thickness of layers IV-VI. The study documents that, while the cytoarchitectonic patterns are in general independent of sensory experience, reduced layer thickness is observed in both primary and higher-order auditory fields in layer IV and infragranular layers. The study demonstrates differences in effects of congenital deafness between supragranular and other cortical layers, but similar dystrophic effects in all investigated auditory fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling

The theory of predictive coding assumes that higher-order representations influence lower-order representations by generating predictions about sensory input. In congenital deafness, one identified dysfunction is a reduced activation of deep layers in the auditory cortex. Since these layers play a central role for processing top-down influences, congenital deafness might interfere with the inte...

متن کامل

Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex

Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that ...

متن کامل

Reorganization of the Connectivity of Cortical Field DZ in Congenitally Deaf Cat

Psychophysics and brain imaging studies in deaf patients have revealed a functional crossmodal reorganization that affects the remaining sensory modalities. Similarly, the congenital deaf cat (CDC) shows supra-normal visual skills that are supported by specific auditory fields (DZ-dorsal zone and P-posterior auditory cortex) but not the primary auditory cortex (A1). To assess the functional reo...

متن کامل

Cochlear implants: cortical plasticity in congenital deprivation.

Congenital auditory deprivation (deafness) leads to a dysfunctional intrinsic cortical microcircuitry. This chapter reviews these deficits with a particular emphasis on layer-specific activity within the primary auditory cortex. Evidence for a delay in activation of supragranular layers and reduction in activity in infragranular layers is discussed. Such deficits indicate the incompetence of th...

متن کامل

Unimodal and cross-modal plasticity in the 'deaf' auditory cortex.

Congenital auditory deprivation leads to deficits in the auditory cortex. The present review focuses on central aspects of auditory deprivation: development, plasticity, corticocortical interactions, and cross-modal reorganization. We compile imaging data from human subjects, electroencephalographic data from cochlear implanted children, and animal research on congenital deafness. Behavioral, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 525  شماره 

صفحات  -

تاریخ انتشار 2017